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Abstract— The interactive roles of inertia and material viscosity as regards the evolution of inhomo-
geneous plastic flow are analyzed. The analysis is presented in the context of the dynamic, one-
dimensional simple shear of a thermo-viscoplastic material subjected to traction-controlled bound-
aries. Existence and uniqueness questions of an exact homogeneous solution for this initial bound-
ary-value problem are investigated. The breakdown of the so-called quasi-static homogeneous
solution is related to the onset of localization. We introduce a dimensionless number, called the
deformation number, and denoted by R,. as the ratio of inertial to viscous stresses. Characterization
of a given deformation as being dynamic is shown to be related to large values of Ry, instead of
simply high rates of applied loading. A model problem is formulated in order to illustrate the basic
features of solutions for this class of deformations. An exact solution is derived for the model
problem as well as a solution based on matched asymptotic expansions. It is shown, based on the
model problem and fully non-linear finite difference solutions, that plastic deformation localizes
within narrow bands in the neighborhood of the boundaries. The shear band thickness is inversely
proportional to the square root of the deformation number. The role of material viscosity concerning
the introduction of a length scale to dynamic deformations of rate-dependent solids is illustrated.

I. INTRODUCTION

Evolution of inhomogeneous deformation patterns in which plastic flow localizes within
narrow bands, commonly referred to as shear bands, has received the attention of extensive
research efforts in the past two decades. The connection between the evolution and sub-
sequent intensification of inhomogeneous plastic flow and catastrophic structural failure
explains the technical interest in the phenomenon of shear flow localization. The name
shear localization derives from the observation that the primary deformation mode within
the regions of localized plastic deformation is that of one-dimensional simple shear. Shawki
and Clifton (1989) have presented an extensive study of various aspects of shear band
formation in thermal viscoplastic materials as well as a review of the recent analyses
concerning the phenomenon of shear strain localization. Most of these analyses were
concerned with the critical conditions associated with the onset of shear flow localization.
The primary difficulty associated with such studies may be attributed to the wide spectrum
of materials, loading conditions. observation scales and rates of deformation at which shear
localization takes place. Our limited ability as regards the characterization of the material
response over several decades of temperature, strain rate and strain poses a serious difficulty
to such analytical attempts that aim at improving our understanding of shear flow local-
ization. A variety of mechanisms have been suggested for the analysis of shear flow
localization. The success of a given mechanism depends on how closely it simulates the
deformation conditions at hand. Two major assumptions have been used extensively by
several authors for the analysis of shear flow localization: (i) quasi-static deformation
conditions and/or (ii) rate-independent material response. The first assumption implies that
inertial effects are assumed to be “sufficiently small” throughout the deformation whereas
the second assumption implies that the material considered exhibits a negligible strain rate
dependence. Table 1 summarizes the mathematical notions of shear localization in four
possible frameworks employing the above assumptions.
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Table 1. Frameworks for the analysis of shear flow localization

Viscous effects

Inertia effects Rate-independent material response Rate-dependent material response

Quasi-static deformations Loss of ellipticity Unbounded solutions
Dynamic deformations Loss of hyperbolicity Bounded solution evolution

Rudnicki and Rice (1975) and Rice (1977) have presented the general mathematical
theory for the analysis of shear localization in rate-independent materials which are deform-
ing quasi-statically and isothermally. In the former theory, the onset of localization is
viewed as a material instability that takes place when the velocity equations of continuing
equilibrium suffer a loss of ellipticity. In Section 2, we present a brief discussion concerning
the governing equations for the dynamic, one-dimensional simple shearing deformation of
a thermally-sensitive, viscoplastic material subject to traction-controlled boundaries. We
also present a graphical tool that is useful for the presentation of the material response
throughout the deformation history as well as being useful in interpreting future results. In
Section 3, we examine the questions of existence and uniqueness of a spatially-independent
solution to the considered initial boundary-value problem in the two cases corresponding
to large and small inertial effects. In Section 4, we examine the intimate relationship between
the failure of the quasi-static, approximate homogeneous solution and the onset of shear
strain localization. This feature is a key to our future developments. In Sections 5 and 6,
we present several attempts at improving understanding of the evolution of inhomogeneous
deformation ficlds as soon as inertial effects become significant. The structure of the narrow
regions in which plastic deformation localizes is examined thoroughly. In Section 7, we
present an exact, closed-form solution for the dynamic simple shearing of a material
described by a Kelvin—Voigt model. This solution illustrates several important features
regarding the phenomenon of shear localization and sets the stage for the fully non-linear
solutions in Section § and the discussion in Section 9 where we introduce a dimensionless
number, called the deformation number, which is an exact analogue to the Reynold’s
number used in studies of viscous fluid flow.

Dynamic deformations are tied to large values of the deformation number instead of
merely high rates of deformation. An expression for shear band thickness is introduced.
This discussion illustrates the interactive roles of inertia and material rate sensitivity as
regards the introduction of a viscous length scale to the problem. Difficulties associated with
the quasi-static and/or the rate-independent limits are clearly illustrated and rationalized.

2. PROBLEM FORMULATION

Consider the simple shearing motion of a material slab whose cross-section occupies
the x—y plane as illustrated in Fig. . The slab has a finite thickness H in the x direction
while it extends indefinitely in the y and z directions. Shear traction histories are prescribed
at the two boundaries corresponding to x = 0 and x = H.

We further assume that all physical quantities are uniform in both the y and z directions
so that the deformation depends only on the single space coordinate, x. Under these
conditions the only non-zero stress components are ¢, = 1, 7,,, ¢,, and o_.. Hence, the
equations governing the considered one-dimensional simple shear are given by [see Shawki
and Clifton (1989) for further details] :

pr, =T, (1a)
ve=9+u 'y, (1b)

0, =r,6.+r1y” (l¢)
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Fig. 1. A schematic of traction-controlled simple shear.

t=f(3",0.7") or ¢ =g(1,0.7"), (1d)
where
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¢=— and y(x, 1) =3"(x, t0)+J ¢(x,n)dn. (le)
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The foregoing equations represent the balance of linear momentum (la), the additive
decomposition of the total strain rate into elastic and viscoplastic contributions (1b), the
energy balance (1c) and the material behavior description (1d). Here, p is the mass density,
v(x, £) the particle velocity in the y direction, (x, ) the shear stress, ¢(x, f) the plastic strain
rate, u the shear modulus of elasticity, 8(x, ¢) the absolute temperature, r, = x/C where k
denotes the material thermal conductivity and C denotes the specific heat per unit mass,
r, = B/C where f denotes the amount of plastic work that is converted to heat (which
typically assumes a value like 0.9). Equations (1d) are two alternative expressions of the
material’s thermal-viscoplastic response.

It should be noted that eqns (la—e) remain valid for arbitrarily large deformations.
Insight into thermoplastic instability obtained from the study of eqns (1a—e) is expected to
be applicable to the understanding of shear strain localization in a wide class of materials.
Further, we define the following measures for the material various sensitivities :

_ o _o _ o ‘
S]:%. Sz :@. 3:(‘?,‘/ﬂ. (2)

The above measures may be viewed as the components of a vector S = (S|, S,, S;) " relative
to a Cartesian reference frame whose unit vectors are denoted by e, e, and es, respectively
(see Fig. 2). If we further define the vector z = (¢, 6, 77)", then the incremental change in
the flow stress can be expressed as follows

dt=S-dz = §,d¢+S,d0+S,dy”. (3)

The function S, represents strain rate sensitivity and it is assumed positive in our subsequent
discussions. The function S, represents thermal softening (S, < 0) or thermal hardening
(S; > 0). The function §; represents strain hardening (S; > 0) or strain softening (S5 < 0).
Figure 2 illustrates special cases of interest. For a given material description, the material
behavior, at a fixed position x and fixed time ¢, is described by a position vector S in the
three-dimensional space (S,. S,, S;). The planes I1,, IT, and I1; are described by their unit
normals (1,0,0)7, (0,1,0)" and (0,0, 1)", respectively. Vectors S that lie in the planes IT,
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Fig. 2. The material response space.

(IT, or I,) correspond to the cases of rate-independent material response (thermally-
insensitive response or strain-insensitive response).
In this work, we will be concerned with materials for which

S =0, S.<0. S,=0, 4)

i.e. we consider materials exhibiting strain rate hardening, thermal softening and strain
hardening. Graphically, such materials will be characterized by vectors S occupying the
upper left parallelepiped region of our proposed material response space. Such material
response will be referred to as a thermal-viscoplastic response. It is important to note that
the measures S;, & = 1,2.3 depend, in general, on the solution to the considered initial
boundary-value problem and hence on the independent variables x and ¢. For a fixed
position x = x,, the temporal evolution of the three measures S, traces a space curve I'y in
the material response space. The collection of such traces for all positions x € [0,1] describes
a material response surface ¢ in the considered space. Examination of this surface provides
useful insights regarding the material response during various stages of shear band evol-
ution.

Furthermore, it is convenient to express the system (1) of governing equations in a
dimensionless form. The dimensionless quantities are defined as follows:

.t T A t ] Mo 0
T T e P Ty
g lole  nTe s P
H* 0y Tll’l:D
i:ﬂ@.ﬁz&%,izx. (5)
Ty Ty To

The subscript zero denotes appropriately selected reference quantities while the charac-
teristic time 1, = 1/¢, is the time required to obtain a unit shear strain at the nominal strain
rate ¢y The above dimensionless quantities are selected such that the governing system of
eqns (la—-e) remains unchanged once they are introduced. We will assume the dimensionless
form in our subsequent discussions. Moreover. the superposed “hat” is dropped for con-
venience of notation.

Complete description of the problem requires the prescription of appropriate initial
and boundary conditions. Such auxiliary conditions consist of the homogeneous initial data



Shear flow localization 2755

v(x, 0) =X, .yp(x, 0) = %o (6)
#(x,0) = o(x,0) = O(x,0) = 1

as well as the following boundary conditions:
(0,0 = ©(1,1) = 4(1) (7a)

and
ls, 0
é;(o,t)za*x(l,t)z(). (7b)

In eqns (6), the initial strain y, is a constant while we note that f(1,1,7,) = 1. Moreover,
the function ¢(r) in eqn (7a) is a prescribed function that satisfies 4(0) = 1 in order to be
consistent with the initial data for the flow stress. The above conditions imply that we are
concerned with the dynamic simple shearing deformation from an initially homogeneous
state with thermally-insulated and stress-controlled boundaries.

3. EXISTENCE AND UNIQUENESS OF A HOMOGENEOUS SOLUTION

In this section, we examine the questions of existence and uniqueness in relation to
solutions of the posed initial boundary-value problem described by eqns (la—e) and the
auxiliary conditions (6) and (7). We seek a homogeneous (spatially-independent) solution
of the form

P =70, 00,0 =0, 1(x,0) = 1(). (8a)
Making use of eqn (1b), the consistent velocity profile must have the form
o(x, ) =a(®)x+L(@), 0<x<1. (8b)

We further require the velocity distribution to be anti-symmetric about the central position
x=0.5 by enforcing that ©(0.5,7) =0.5. This requirement leads to the relation
2{(t) = 1 —a(t) which reduces the form (8b) to

o(x,0) = 2((x—)+3, 0<x<1, %)

with the further restriction that a(0) = 1 for consistency with the initial data for the particle
velocity.

Now, we distinguish the three important deformation classifications illustrated in
Table 2. Note that the distinction between the three deformation classifications is related
to the “*size” of the inertia term (which can be equivalently achieved in terms of the stress
gradient [see eqn (1a)]. In other words, we may recognize the case of a static deformation
as that in which the flow stress is spatially uniform, the quasi-static deformation as that in
which the flow stress exhibits weak spatial dependence and the dynamic deformation as
that in which the flow stress depends strongly on x. Furthermore, it is important to
emphasize that the quasi-static approximation is viewed as appropriate when the inertia is
sufficiently small or, alternatively, as the mathematical limit p — 0 in egn (1a). This implies

Table 2. Inertial deformation classifications

Deformation Static Quasi-static Dynamic
. . dv v dr . .
Mathematical characterization P PP 0 p o x 0 p o finite
¢ g lé
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that the particle velocity may still be time-dependent provided that the inertia term remains
sufficiently small. Consequences of this classification are discussed thoroughly in this work.

3.1. Dynamic deformation

Substitution of eqn (9) and the homogeneous form of the flow stress in eqn (la) gives
a(r) = 2(0) = 1 which yields the homogeneous velocity profile ©#(x, 1) = x as well as the
homogeneous stress profile 7(x,7) = 4(r). Equation (1b) provides the homogeneous plastic
strain rate ¢(r) = 1 —[%(¢)/u]. Equation (le) gives the homogeneous plastic strain whereas
the energy equation (1c) yields the homogeneous temperature. The complete homogeneous
solution is given by

. 4(1)
ox, ) =x, T(t)y=%(), ¢()=1— <T> (10a)
YG()—1
70 = (yo+z)—{ © } (10b)
U
(1) =1~ %[gz(f)‘ 1+r, J %(n) dn. (10c)
Substitution of the above solution in eqn (1d) gives the consistency requirement :

G(1) = f($(1), 0(1), 7(1)).- (an

Equation (11) is a4 non-linear ordinary differential equation for the boundary traction
history %(¢). It is evident that the requirement (11) is not satisfied for arbitrary functions
%(ty and general material descriptions f. Hence, we conclude that the dynamic simple
shearing deformation of a thermal-viscoplastic solid subject to prescribed stresses at the
insulated boundaries is always inhomogeneous, i.e. there exists no homogeneous solution
for the considered problem.

3.2. The quasi-static approximation

In this case, the homogeneous solution for the flow stress is still given by the second
of eqns (10a) while we satisfy the equation of motion (1a) by considering the mathematical
limit p — 0 which allows the function «(#) in eqn (9) to be time-dependent. Equations (1c)
and (1d) can be used to provide the following initial-value problem, described by a system
of non-linear, non-autonomous ordinary differential equations, for the homogeneous solu-
tion:

d—i(’t_) =r%(g(%(1), (7(1),,"([)) = hl(é, 1), 9(0) =1, (12a)
E%(?Q = 9(%(0),0(1),7(1)) = h(0.7. ). 7(0) = 7. (12b)

The above initial-value problem may be expressed in the vector form

da(t)
de

h(a~ [)’ 3(0) = (l- }YO)Ta (133)

where
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a(ry = (B(0),5(1))" and h(a,r) = (h,(a, 1), h,(a, )" (13b)

Sufficient conditions for the local existence, uniqueness and well-posedness of solutions to
the non-linear initial-value problem (13) require that the function h(a,) be continuous and
that it satisfies a Lipschitz continuity condition with respect to a in an open connected set
De R x R* with the requirement {a(0),0} € D; see, for example, Coddington and Levinson
(1955). We will consider the class of materials, i.e. the functions f'and ¢ in eqn (1d), for
which those sufficient conditions are met. Hence, a unique, well-posed solution a(z) of the
system (13) exists. Using the foregoing solution, one can readily calculate the time-depen-
dent function x(f) appearing in eqn (9) from

(1) = dz(:) + ?E)—. (14)

The temporal dependence of x(r) causes the particle velocity to be time-dependent and,
therefore, the inertia term /(1) = p év/ét to be non-zero. Hence, this solution should only
be viewed as an approximation that remains valid as long as the inertia term remains
sufficiently small.

4. FAILURE OF THE QUASI-STATIC APPROXIMATION

The quasi-static solution obtained by solving the initial-value problem (13) is attractive
for various analyses concerning shear localization because it offers an exact solution to the
non-linear problem described by eqns (1a—¢). Molinari and Clifton (1987) and Shawki and
Clifton (1989) have presented several quasi-static solutions for a number of material
descriptions. Those solutions proved useful regarding the improved understanding of plastic
flow localization. Molinari and Clifton (1987) examined the critical conditions for the
quasi-static solution to become unbounded at a finite time (7 = 7., say) and related this
feature to the onset of localization for this class of problems. The critical time corresponding
to the solution unboundness was viewed as the initiation strain for flow localization.
Comparisons with experimental observations indicate that such predictions for the initiation
strain consistently underestimate the strain needed for the onset of flow localization. In this
section, we examine the validity of the quasi-static approximation as well as the connection
between the onset of localization and the failure of the quasi-static approximation. For this
purpose we combine expressions (14) and (9) to calculate the local inertia term associated
with the quasi-static solution

2,}-, (g
Ix.0)= pCZ (a‘r L p{a;z— ([)}( —*) (15)

In eqn (15), the homogeneous plastic strain, (¢), is obtained by solving the non-linear
system of ordinary differential equations (13). Examination of eqn (15) indicates that the
inertia term 7(x, 7) does not vanish in general. Moreover, the maximum absolute value of
the above inertia term. denoted by I, occurs at the slab boundaries and is given by

d’7 41

= £ 16
dl_+ p ‘ 15(0)]. (16)

In view of the above expressions, it is interesting to observe that the unboundness of the
quasi-static solution (which implies that d¢/dr — o) is associated with the unboundness
of the inertia term (16). This indicates that flow localization, in this framework, is tied to
the mathematical failure of the quasi-static approximation. An alternative approach for
examining the role of inertia as regards shear band formation is based on evaluating the
rate of change of the total kinetic energy of the system
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. _d [ oot
K(z):a—[{L 5 dC} Lvadx. (17)

A rigorous homogeneous solution must satisfy : K(¢) = 0, ¢ > 0.1 However, there is a non-
zero value of the kinetic energy associated with the approximate quasi-static solution. Here,
we calculate the rate of change of the total kinetic energy associated with the quasi-static
solution and relate its growth (i.e. the deterioration of the quasi-static approximation) to
the onset of shear localization. Making use of the quasi-static solution together with
expression (17), we obtain

k) = w““”@o+‘qlm—ﬂmwmr (182)

The above expression indicates that the rate of change of the total kinetic energy becomes
unbounded as soon as ¢ — f,.. Further, it is useful to express the above measures of inertial
effects in terms of the localization damage parameter D, introduced by Shawki and Clifton
(1989) :1

Dy, (1) _lsgn {a()}
[ Dy (D] 6 1-D

K@=+ L.(0. (18b)

Severe localization was related by Shawki and Clifton (1989) to the critical time ¢ :
Dy (t.,) = 1. Examination of expressions (18) indicates that both measures of inertial effects
i become unbounded as soon as D, — 1. Moreover, we observe that§

Lo _p 150 _,
$() ~ 21-Dyl(0)

61— wn@mmwo (19)

In view of the boundness of Dy(z.,), the above expressions imply that the quotients 7,,/¢
and K/¢ are singular in the neighborhood of the critical time f... The singularities are of
orders “— 1" and ‘* —2”, respectively. In other words, the maximum inertia and the rate of
change of total kinetic energy become unbounded at faster rates as compared with the rate
of growth of the plastic strain rate, i.c. the approximate, homogeneous quasi-static solution
breaks down before the critical time ¢, is reached.

For illustration purposes, we consider the class of thermal-viscoplastic solids modeled
by the empirical power law,

T=0(y/y0)"y" or =& (p/y)7, (20a)

+This must be true because of the vanishing of the stress gradient for a homogeneous solution.

tFollowing Shawki and Clifton (1989), the local exact solution for the plastic strain rate of the non-linear
system (1) corresponding to the deformation conditions considered in the current work (with no elastic effects
and constant stress boundary conditions) is given by

b0 1 G,
20 "1 Do O "’(O)J st "

In the above expressions, C, stands for the slope of the adiabatic stress—strain curve at constant strain rate whereas
S¥is a logarithmic measure of strain rate sensitivity. These quantities are given by

Cy=8,+n1S,, St=dflélng.

§Note that this comparison holds only for rigid material response, adiabatic deformations and constant stress
boundary conditions for which %(1) = %, = a(t) = 1/(1 —Dy(1)) = ¢(1); $(0) = 1.
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where
p=—vim, q= —nim, r=l1/m, (20b)

where all exponents assume constant, material-dependent values. Furthermore, we consider
the prescribed boundary stress to be prescribed by

0 < —1
G(r) =< 1+(t/t;) —1,<t<0 ;, 2n
1 t=20

for some positive constant 7,. The homogeneous quasi-static solution is simply given by

T 5
f [1+rivo(n—1D]"n *dn =%; l_"(t}Ei_f—Q (22a)
1 70 0
0() = 1417, [T(n—1] (22b)
R dl(r)
0 =704, (22¢)

Molinari and Clifton (1983) first noted that a necessary condition for the unboundness of
the solution of the quadrature in eqn (22a) at a finite critical time, ¢ = 7., (say), is given by

p+g>1 or v+n+m<O. (23)

The above condition was viewed by Molinari and Clifton (1983) and, Molinari and Clifton
(1987) as a necessary condition for the onset of localization in power law materials. The
critical time 7., for the onset of localization is provided by

tc,=>’uf [I+rye(m—D] " n “dn, p+g>1. (24)

In the special case where » = 0 (g = 0) the power law material model (20) may be viewed
as describing the behavior of a non-Newtonian fluid with temperature-dependent viscosity.
Subject to such conditions, the solution (22) can be evaluated explicitly to obtain

&) = {1+r(1 —p)t}'_[—;ﬂ =0y for p#1, (25a)
while
(1) = 0(t) =exp {r,t} for p=1. (25b)

Next, we use the quasi-static solution (25) to examine the evolution of the following
normalized quantities :

—M — 3 Ipp — _i t-r .
E (1) =30~ {+r(1=pt 7= {1 t} (262)
L o (T
E,(1) = ro = {l+r(=pyt} 17 = {1 [C} (26b)
]-L((t) 3t t 31[):;
Ex) =% —={l4r(1—p)} 17 ={1—— , 2
(=%~ 1+n (=P} {1 - (260)

where
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Fig. 3. Evolution of the singular terms given by equs (26a—d).

0.0 05 1.0 15 2.0 25 3.0
Time (t)

Fig. 4. Evolution of inertial effects during the quasi-static deformation of a non-Newtonian fluid
with temperature-dependent viscosity.

—1
l = TN
r(l1—p)

p>1. (26d)

Figure 3 illustrates the behavior of the functions in egns (26a—d) for the case where p = 20
and r, = 0.34 which are representative values of a typical structural steel. Examination of
Fig. 3 indicates that, as ¢ approaches the critical value ¢, the quasi-static approximation
breaks down. It is important to observe that the breakdown of the quasi-static approxi-
mation, measured by larger values of either E,(¢) or E,(f), takes place at much earlier times
than the “‘critical time”. The failure of the quasi-static approximation implies that an
inhomogeneous flow field emanates from the originally near-homogeneous, quasi-static field
which gives rise to shear localization in the sense of shear strain concentration within
narrow boundary layers (where inertial effects are most significant). This very connection
between the onset of shear localization (severe deformation inhomogeneity) and the
increased importance of inertial effects is the primary focus of this work.

Figure 4 illustrates the dependence of the evolutionary behavior of I,(7)/I,(0) on the
material response through considering different values of the exponent p. Note that the
inertia associated with the quasi-static solution grows exponentially with time for materials
with p > 1. In fact, for materials with 2p > [, the inertia term grows monotonically with
time and the homogeneous quasi-static solution eventually breaks down, albeit at a much
slower rate than that corresponding to materials with p > 1. Next, we seek to explore the
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structure of the inhomogeneous field that takes place as soon as inertial (dynamic) effects
become significant.

5. ANALYSIS OF A MODEL PROBLEM

In order to examine the influence of inertia on the evolution of inhomogencous
deformation as well as its localization retardation effect, we neglect elastic effects, by setting
u = oo in eqn (1b), and eliminate the velocity from eqns (1a,b) while taking advantage of
the energy equation (lc) to obtain

& _ {S‘ . t)} O e (6 1), (27a)

ot 4 ox?
The above non-linear partial differential equation should be satisfied by any smooth (classi-
cal) solution of the initial boundary-value problem, described by eqns (1a—e) as well as the
auxiliary conditions (6) and (7). Conversely, if we know the solution to the posed initial
boundary-value problem except for the flow stress t(x, ), then we must be able to solve
eqn (27a) together with the auxiliary conditions

(0 =1, 10,0 =1(1,1)=%() for >0 (27b)

for the correct flow stress 7(x, 7). It is evident that the non-linearity of eqns (la—e) presents
a serious difficulty as regards finding exact analytic solutions. Therefore, we introduce a
model problem that is sought to retain the basic mathematical structure of eqn (27a)
while admitting a closed-form solution. For this purpose, we suggest the following initial
boundary-value problem :

0 0*
i:520 T +B,, (28a)
ot Ox2
with
1(x,0) =1(0,1) = t(1,1) = 1. (28b)

In writing eqn (28a), we have used the boundary stress prescription given by eqn (21).
Furthermore, the term &% in eqn (27a) is a constant that replaces the quotient S,(x, 7)/p.
Although B, replaces a term that depends on both space and time, the approximation
introduced is expected to have a secondary effect as regards the spatial structure for the
flow stress. It is important to note that the sign of the term B, parallels that of the slope of
the adiabatic stress—strain rate at a constant strain rate, i.e. Cy(x, f).

5.1. Exact solution
The complete solution of the linear model problem (28) can be obtained through a
variety of standard techniques and is given by

) =1+ { (4;")" zz% (X, t)}, (29a)

n=1
where

sin (,x)

z3
Gn

u,(x, 1) = {1—exp[—8°&1), &, =(2n—Dr. (29b)

A number of useful observations can now be made. First, we note that the term enclosed
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by braces in eqn (29a) represents inertial effects since it vanishes in the quasi-static limit
p — 0. More specifically, as p — 0 then 6 — oo and 1(x, r) - 1 which corresponds to the
quasi-static solution for the problem posed. Therefore, the solution (29) may be viewed as
the superposition of the approximate quasi-static solution and an “inertial correction
term”. Furthermore, the behavior of the solution (29) depends on inertia and material rate
sensitivity through the quotient S, (x, )/p <> &°. This suggests that the quotient S, (x, 1)/p is
the channel through which the interactive roles of inertia and rate sensitivity are displayed
and it is, therefore, expected to play a primary role as regards the qualitative behavior of
solutions. Further examination of the solution (29) implies that the inertial correction term
is dominated by the large wavelength components of the series solution (i.c. smaller values
of ¢, for fixed values of other parameters). Further, we explore the structure of the solution
(29) in the two limiting cases corresponding to very small and very large values of §*:

5.1.1. Inertial stresses > viscous stresses (6* — 0). In this case, the solution (29) reduces
to

we) = (0 + G40 06 ) (302)
W) = 1+@By) Y sin (&%) Li +0(52)} (30b)

Evaluation of the summation in eqn (30b) provides the simpler solution form¥
T(x.t) = 14+ Byt, as 6° —0. 31

It 1s important to note that this solution does rot satisfy the imposed stress boundary
conditions. This is due to the fact that, in this limit as 6 — 0, the partial differential
equation (28a) reduces to an ordinary differential equation that is incapable of satisfying
the boundary conditions in eqn (28b). However, this solution will be shown to coincide
with the outer solution of a singular perturbation version of the considered model problem.
That is, the solution (30) is valid for sufficiently small values of §* away from the boundaries.

5.1.2. Viscous stresses > inertial stresses (8* — o). In this case, the solution (29) reduces
to

sin (¢, x
ll,,(x, t) - # s

hence K as &% — oo, (32)

4B,\" = sin (&,
T(X,I)—>]+<-5—7O‘> Y Eﬂ%ﬂﬂ_,],
- n=1 n

1.e. the solution (29) to our model problem (28) reduces to the quasi-static solution in the
limit where viscous stresses are much larger than inertial stresses. At this point, it is
important to observe that it is the relative weight of inertial to viscous stresses which
controls the solution,

F1t is useful to note that

"&osinf(2n—Drx]
X on—Tr =, for xe0,1].
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Fig. 5. Exact solution of the model problem (28) for different values of 6°.

Quasi-static Approximation

Fig. 6. Behavior of the exact solution (29) for different values of 6%

Figure 5 illustrates the behavior of the exact solution (29) for a spectrum of &* values
in the range [1073, 10%]. The profiles shown in Fig. 5 are obtained by calculating a partial
sum of the series solution (29) that uses 100 terms. Further, we have used the values
B, = —8, Ax = 0.005 while evaluating the solution at the time 7 = 0.1.f It is important to
note that the solution associated with small values of §° exhibits a boundary layer-like
structure in the neighborhood of specimen boundaries. The thickness of this boundary
layer decreases with decreasing values of 8°. This behavior suggests that the model problem
(28) is a singular perturbation problem for small values of 4°. The key to the shaded bar at
the top of Fig. 5 will be explained in the next section. Figure 6 provides the evolution of

tThe selection of 100 terms for the evaluation of the series solution (29) is based on the convergence charac-
teristics of the series solution. Further, the increment Ax is used for plotting purposes while the selection of
B, = —8 is intended to reflect a situation in which the slope C, has become sufficiently negative in order to
simulate severe localization.
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the stress fields, obtained through the exact solution (29), for the same values of 6* used in
Fig. 5.

The stress behavior illustrated in Fig. 6 indicates that the quasi-static approximation
is only appropriate for sufficiently large values of the dimensionless quotient S,(x, )/p.
Values greater than 100 are viewed as sufficiently large. Large values of the quotient
Si(x.1)/p correspond to either slow rates of loading or strong strain rate sensitivity. More-
over, it should be noted that this quotient depends on both position and time. In fact, the
typical behavior of this quotient within a localizing zone is that it decays monotonically.
This behavior suggests the insufficiency of the quasi-static approximation for problems
involving dynamic flow localization.

6. THE SINGULAR PERTURBATION PROBLEM

In this section, we examine the detailed spatial structure as well as the temporal
evolution of solutions to the model problem (28) in the case where inertial stresses dominate
viscous stresses. For this purpose, we take advantage of the problem symmetry and consider
the following initial boundary-value problem:

a

? T

CcT
-, =&

cl

>3]

+B,, exl1, B,=0(), (33a)

2

X

~

with
ot
7(x,0) =1(0,1)=1 and FTc(O'D’ t) = 0. (33b)

Next. we follow a standard procedure of perturbation methods and seek an outer solution
that is valid away from the boundaries and an inner solution that describes the behavior in
the vicinity of the boundaries. The method of “matched asymptotic expansions” is used in
this analysis.

6.1. The outer solution [t (x,1)]
We seek an outer solution, valid away trom the boundaries, of the form

k= =%

TN ) = oD Fen ()= Y n(x). (34a)
K=o

with

22,(0.5.0)

z7.(x,0) = 9,y and =
Ox

0, (34b)

for all integers k = 0. In eqns (34b), J,, is the Kronecker delta. Substitution of the solution
(34a) in the governing equation (33a) and collecting terms of the same order of the small
parameter ¢ gives the following set of initial boundary-value problems for the functions
:;\(.\', f) k 2 0:
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0z4(x, 1) _
o By
520(0.5.1) (35a)
a0 =1 and 22020,
ox
as well as
ﬁzk(_Y, I) . C’?ZZ/(, 1 (X, t)
o )32
5 ox >1 (35b)
z.(0.5,1)
7(x,0) = k(a—x =0

It is straightforward to verify that all the initial boundary-value problems given by eqn
(35b) have a vanishing solution. Hence, the outer solution coincides with the zeroth-order
term in the expansion (34a), i.e.

19x, 1) = 1+ Byt (36)

Furthermore, note that the outer solution (36) is the same as the limit of the exact solution
(29a) as &* — 0, see expression (31) in Section 5.1. This implies that the outer solution
expresses the response in the spatial interval far from the boundaries where inertial effects
overwhelm viscous effects.

6.2. The inner solution [t"(x, )]
Here, we seek an inner solution that is valid in the vicinity of the boundary x = 0. For
this purpose, we introduce the magnified space variable { defined by

{ = x/¢, (37)

where 4 > 0 is a constant to be determined from the analysis. In terms of the new variable
, eqns (33a,b) reduce to

LA (ST Y e (8))
=& 7
ot or?

+ B, (38a)
with

19, 0) = 190, 4) = 1. (38b)

The choice A = 1/2 appears to be the most appropriate for the considered problem : see, for
example, Nayfeh (1973). We now assume an inner solution of the form

k= o
T(”(;’* [) = (")O(Ca t)+8w1(4,3 t)+ = Z Skwk(‘:v t)’ (393)
k=0

with

SAS 32 17-18-T
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@, (. 0) = w (0, 1) = 00, Yk = 0. (39b)

Substitution of eqns (39a,b) in the governing equation (38) gives the following initial
boundary-value problems for the functions w,({, t), k = 0:

f?(")()(g- f) _ f‘;z(U()(‘:s 7 +Bol

ot PG (40a)
Wy (£,0) = w,(0,1) =1 J
and
ConlC, 1) Fw(l 1) l
o o tk= L (40b)

U)[\(L_‘, 0) = U)k((), t) =0

Complete description of the problem for the inner solution requires the additional condition
that

lim {mi;(f’ [)} —0. Vk=0, @1
N e

in order to be consistent with the outer solution t'“’(x, ¢). Subject to the foregoing conditions,
it is evident that the unique solution to all the problems in eqn (40b) is the zero solution.
Hence, the inner solution is completely described by the zeroth-order term in the expansion
(39a) which can be determined through solving eqn (40a) together with the consistency
(matching) requirement given by eqn (41) to obtain

"D = (1 +BOI)_(BO,)[(1 +2Q%) erfc (Q) — 2—2593}, = g, . (42)

/ /
N 2/t

In eqn (42). the notation erfc(x) denotes the complementary error function of x. Com-
parison of expressions (42) and (36) allows us to rewrite the inner solution as

(1) =T ) — (Boh H(QUL, 1), (43)

where H(Q) is the term enclosed by square brackets in expression (42). Examination of
expression (43) implies that H(0) = 1 so that the solution (43) satisfies the end condition
(0, 7) = 1. Furthermore, it is easy to verify that H(xc) = 0 so that the consistency con-
dition (41) is exactly satisfied. The complete solution to the considered singular perturbation
problem (33) may now be summarized as follows:

[ 1+ Byt foro < x < 0.5

T('Y’l):(|1+3(,t{l—H<2$;,>} for0 < x < 9. (@4)
. VA

It is interesting to note that the inner solution describes the solution of the model problem
(32) within a boundary layer whose thickness is proportional to §. For each profile in Fig. 5,
with a value of 4% < 1, the thickness of this layer is computed based on the asymptotic
solution as being simply J. These analytically-computed thicknesses are shown on the top
bar with different levels of shading intensity. Comparison of the computed thicknesses with
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Fig. 7. Comparison of the exact solution (solid lines), given by eqn (29), with the asymptotic solution
(solid circles), given by eqn (44).

those obtained from plotting the exact solution (29) shows excellent agreement. Figure 7
examines the validity of the asymptotic solution (44) through a comparison with the exact
solution (29) of our model problem. As expected, the two solutions exhibit excellent
agreement for values of § < 1. The asymptotic solution (44) breaks down for higher values
of 4.

The spatial structure of the boundary layer for < 1 is described entirely by the
function

H(Q) = (1+2Q%) erfc(Q) — :Z/Ee-ﬂz. (45)
T

We will refer to this function as the shear band shape function. Figure 8 provides a graphical
illustration of its behavior.

Here, we recall that & replaces the ratio S,/p. Moreover, we point out that the sign of
the lower-order term B, in eqn (33a) determines whether the outer solution grows (B, > 0)
or decays (B, < 0). This simulates the effect of the sign of the slope C, of the adiabatic
stress—strain curve at a constant strain rate on the behavior of the flow stress for the non-
linear problem. It is also useful to observe that the unique solution to the model problem
(33) when B, = 0 is the quasi-static (spatially uniform) solution t(x, ) = 1. In terms of the
graphical representation of Fig. 2, and during a constant strain rate test, the situation
associated with B, < C, = 0 corresponds to
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Fig. 8. The shear band shape function H(Q).

dt=S-dz =0, (46)

i.e. the evolution of an inhomogeneous deformation field, for our considered problem, is
related to the non-orthogonality of the material response vector S to the vector
dz = (0,d0,dy)". The condition (46) also signals increased inertial (dynamic) effects, i.e.
the breakdown of the approximate, homogeneous quasi-static solution.

7. EXACT SOLUTION FOR A KELVIN-VOIGT MATERIAL

In this section, we consider a special case for which an exact closed-form solution can
be obtained. This solution will be used to support our earlier discussions and provide some

additional insights into the considered problem. For this purpose, consider the case in
which :

(i) elastic effects can be neglected (i.e. u = 0);
(i1} the deformation is isothermal (l.e. ry =, = S, = 0);
(iil) inertial effects are significant ;
(iv) stress boundary conditions (21) are applied ; and
(v) the material viscoplastic response is described by a Kelvin—Voigt model
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T =5,7+C,y, (47)

where the coefficients S, and C, are taken to be constants. Using the governing equations
(la,b,e) together with the material description (47) gives the following linear system of
partial differential equations for the flow stress and the particle velocity :

ot , 0%t ov

52l 0 bkl 4

ar ) Py +5, o (48a)
v 1ot
— = 48b
ot pox’ (48b)

where
? = & and &° = i > 0. (48¢)
P p

It is useful to note that if the strain y(x, ) in eqn (47) is interpreted as an elastic strain, then
real values of ¢ in eqn (48¢) would correspond to the elastic shear wave speed. On the other
hand, in our case where the material is rigid while exhibiting linear strain hardening (or
softening) and strain rate hardening, real values of ¢ in eqn (48¢c) are interpreted as
corresponding to the plastic wave speed. Further, non-vanishing values of 4 introduce a
diffusion-like behavior to solutions of the governing equation (48a). Next, we introduce
the notation

G=—=2=-% (49)

which represents the ratio of the slope of the adiabatic stress—strain curve at constant strain
rate to the material strain rate sensitivity. The auxiliary conditions associated with eqns
(48a—) are given by

70,0 =1(1,) =1(x,0) = 1, y(x,0) =y, (50a)
l - C 0 0
7(x,0) = —Srp})— = ¢,, v(0.5,1) = %, v(x,0) = ¢ox. (50b)

The exact solution of the initial boundary-value problem described by eqns (48a—) can be
obtained if we seek solutions of the form

(x, 1) =1+ A()siné,x, v(x, 1) = %{1 + B(f) cos &, x, (51a)

with
&=Q@n—Dm, n=123,... (1b)

The above solution form satisfies all the auxiliary conditions for the flow stress as well as
the center-line condition for the velocity. Substitution in the system (48) provides the exact
solution
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s sin &,
w60 = 1+4¢,S; S d(E00) ; * (52a)
n=1 n
and
¢0 < Cos Cjnx
v(x, 1) = 5 +4¢, Z d.(E,. 1) )5—2— (52b)
n=1 n
where
CP:'*—QP'W P eP,‘l’t_Pf e[’”“l
d-r én’t =T dz énst = s 533)
(995 Pr_p- (1) P P (
and
P% = %[—al i\/(a% —40[))], a, = (éna)zs ay = (Cfnc)z = Gal- (53b)

The solutions for the plastic strain and plastic strain rate are obtained by substituting
expression (52a) in the material description equation (47) and hence integrating the resulting
equation to obtain

(6, D) = e+ (1 —e %) /C,+4¢0S, Y d(&,, z)%é”x (54a)

n=1 = h

) x sin &,
P, /o = +4G Y, d.(&,,0) ; 5 (54b)
n=1 n
where

Pl eSOy (PF (aPTt__a—Gr (P +G

4D _ (e e (P +G)—(e e “)/(P, + ) (540)

PrT_P;

The qualitative behavior of the above solution in the two important cases corresponding
to (i) 6° - 0 and (ii) > - oo is illustrated in Table 3. In the limit (i), the solution behavior

Table 3. Qualitative behavior of the exact solution (52)

5 -0 &= w
Rate-independent limit Quasi-static limit
Inertial stresses > viscous stresses Viscous stresses > inertial stresses

prove |-G
Noo# P =0, P = (50 >—0

Define: p, = £,/ (1C,l/p)

C, > 0: Hardening é‘,, <0: Softeningr
d(&,. 1) = [sin (p,D1/p. d (&, 1) = [sinh (p,0)]/p, di(¢nt) >0,
d (&, 1) = cos (p,1), d.(&,, 1) — cosh (p,0), e 1) = 1,
di(&.n - d(&nt) = d (&, 1)~ 0,
[G sin (p,1)]/(p.) +[e” ¢ ~cos (p,1)] [G sinh (p,0))/(p.) + [e” ¥ —cosh (p,1)]
G*+p; G*—pn
x, 1y =1,
The exact solution diverges!
Diffusionless plastic This is often called “wave 2(x, 1) = o,
wave propagation trapping” or simply “loss of Foe ) = dye= 9,

hyperbolicity™
7%, 0) = 708 "+ (1—e9)/C,.
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Fig. 9. Behavior of the roots P} for é° # 0.

depends on the sign of C, = S,. In the case of strain hardening (C, > 0), the solution (52a)
describes plastic stress wave propagation whereas in the case of strain softening (C, < 0),
the series solution (52a) diverges implying an ill-posed mathematical setup. In fact, if the
slope C, was taken to be a variable that changes sign from positive to negative, then the
instant at which it vanishes corresponds to the event called wave trapping by Wu and
Freund (1984). This instant is associated with the loss of hyperbolic character for the system
(48) which also means that boundary data can no longer be communicated to the interior.
On the other hand, in the limit (ii), the solution reduces to the approximate quasi-static
solution. Further, we note that in the limit (ii), <.(¢,. £) — 0 and the homogeneous, quasi-
static solution for the plastic strain and plastic strain rate may, therefore, be easily deduced
from eqns (54a—).

Without loss of generality, we take 7, = 0 and observe that the solutions (52a) and
(54a), at a fixed pair (x, t), depend only on the two parameters G and §7; this implies,
under the cited conditions, deformations for which G and §° exhibit identical localization
responses.

In the foregoing discussion, the limit 4> — 0 may be viewed as corresponding to the
rate-independent approximation while the deformation is still regarded as being dynamic.
On the other hand, the limit §* — oo may be viewed as corresponding to the quasi-static
approximation while the material is still regarded as being rate-dependent. Next, we examine
the effect of a non-vanishing &° on the regularization of the ill-posed problem associated
with the rate-independent approximation with a softening material response.

Figure 9 illustrates the behavior of the two roots p,;” for non-vanishing values of 6°. It
is useful to rewrite these roots as follows:

+ 4ro— \ —
n = 11 / 1 —LP,, . lP” = - = . 55
5 UFVC ) 25t a (55)

In the case of a strain hardening response (G > 0), we distinguish the two cases (1) ¥, > 1
and (ii)) ¥, < 1. In case (i), there exists a critical wavelength /* = (5/(2\/G) above which the
components of the series solutions (52) and (54) describe travelling waves with decaying
amplitudes and below which the components of the series solutions describe standing waves
with decaying amplitudes. On the other hand, in case (ii), all components of the series
solutions describe standing waves with decaying amplitudes and no critical wavelength
exists.

In the case of a strain softening response (G < 0), the root P,/ is always real and
positive whereas the root P, is always real and negative. Careful examination of the series
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Table 4. Details of the study cases illustrated in Fig. 7.

Variable Run a Run b Run ¢ Rund Rune
G, —-0.25 —-0.1 -0.5 —0.25 0.05
S, 0.025 0.025 0.125 0.025 0.05
P 2.5 2.5 12.5 0.25 0.25
8 0.01 0.01 0.01 0.1 0.2
G =Cyp —0.25 —4 —4 —10 1

solutions (52) and (54) indicates that they are uniformly and absolutely convergent for
8 # 0. Notice that these series solutions diverge when 6 = 0. In other words, the mutual
presence of inertia and rate dependence retains the well-posedness of the considered problem
in the case of a strain softening material response. The absence of one or both of these
effects gives rise to a problem that experiences mathematical difficulties as soon as the
material exhibits a softening response (refer to Table 1).

Figure 10 illustrates the behavior of the normalized strain rate corresponding to the
cases listed in Table 4.

The calculations illustrated in Fig. 10 are obtained by evaluating a partial sum of the
series solution (54b) using 100 terms. Furthermore, 100 spatial divisions are used and the
profiles correspond to uniform temporal intervals equal to Az = 0.05 with the last profile
corresponding to a final time ¢ = 0.2. Moreover, these results are obtained for y, = 0. It is
useful to note that the results are identical for runs b and ¢, which confirms our carlier
observation regarding the invariance of the response with respect to equal values of the
dimensionless numbers G and &°. Moreover, it is evident that for small values of 62 the
solution structure in the vicinity of the boundaries is completely determined by the same
two numbers G and &°. The maximum value of the normalized plastic strain rate, in the
case of strain softening, occurs at the boundaries and is given by

Runs (b & ¢)

Normalized plastic strain rate

Normalized plastic strain rate

Spatial Dimension (x) Spatial Dimension ()

Fig. 10. Exact solution for a Kelvin—Voigt material [normalized strain rate is defined as j(x, #)/
7(x, 0)].
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7(0.1)/3(0.0) = exp { — Gt} (56)

Furthermore, the width of the boundary layer in which plastic flow localizes is proportional
to 4. A final observation pertains to Fig. 10(e) in which the material exhibits strain hardening
and the strain rate decreases in the vicinity of the boundaries.

8. NON-LINEAR NUMERICAL SOLUTIONS

We present a detailed finite difference solution to the initial boundary-value problem
described by the governing equations (la—e) along with auxiliary conditions given by eqns
(6) and (7). The purpose of the fully non-linear solution is to verify the validity of con-
clusions based on the model problem presented in Sections 5 and 6.

8.1. The finite difference scheme

The numerical scheme is based on a uniformly divided spatial domain xe[0, 0.5].
Difference equations are based on eqn (27a) together with eqns (la.b,c) and the second
form of eqn (1d). The difference equations for interior nodes are given by

1

D~ (k)" = (i:)—)”z) S(D (h)T 4+ (C)ID (W) + (roS2)! D (H)D~ (W8 (57a)

7

1
D (ke = D" (hye; ™! (57b)
oyt = DOy (57¢)
D (k)0 = roD H (D~ (W +r, 7). (57d)

The difference operators used in eqns (57a—d) are defined by

DY = (i —u)ih, D (W = (W) —ui_\)/h (58a)
Dy =(D*(h+D (h)2, Dk = (it —u))ik, (58b)
W = u(x.t,) = u(/'h, i k) h=Ax. k= Y (A0, (58¢)

i=1 i=1

Boundary values for various quantities are obtained through appropriate one-sided differ-
ence approximations of the boundary conditions. The variable time step &, is selected based
on the necessary von Neumann stability requirements

IR
k, < min {)a)}—} (59)
PG 2007

It is useful to note that the two groups ¢° and G control the stability of the finite difference
scheme. These two groups were shown earlier to control the localization response in the
case of the model problem (Sections 5 and 6) and the case of a Kelvin—Voigt material
(Section 7).

8.2. Numerical experiments
This section examines the computed solutions for five test cases labeled as runs 1-5.
We used the power law given by eqn (20) to model the material response for all test cases.
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Fig. 11. Spatial evolution of the flow stress and plastic strain rate for run 1.

The spatial domain [0,0.5] is divided into 80 equal numerical elements. Figures 11-14
illustrate the spatial evolution for the flow stress and plastic strain rate for runs 1-4. All
five test runs share the following numerical values for various quantities: 8§, = 300°C,
7o =436 MPa, p = 7800 kg m >, C = 3.9x10° J m 3 °C~', = 0.9 and y, = 0.01. Other
quantities are given within each individual figure.

Based on the computed solutions, we can make a number of observations:

(1) Although runs 1 and 2 share the same loading rate, slab dimension and yield
strength (and hence the same dimensionless density), their contrasting localization response

v=-02 H=25mm Q e= 028

2 =
¥, =5 X 10* sec™! 0%(x,0) = 0.0714

G(x,0) = —~ 419
1.002 24
t=0
1.000 2.2
0.998 e : g 20
» S
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D 0.994 F-WN s E 16
3 ! 9]
B 0992 b\ > —— é 14
0.990 |\ A 1.2
01988 Y SRR ] Sracizsenveciacaios 1_0
t=0.15
0.986 ‘ 1 ! L 0.8 ! L 1
0 01 02 03 04 05 0 01 02 03 04 0S5
Spatial Dimension (x) Spatial Dimension (x)
(@ ®

Fig. 12. Spatial evolution of the flow stress and plastic strain rate for run 2.
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Fig. 13. Spatial evolution of the flow stress and plastic strain rate for run 3.

is attributed to differences in values of 6* and G. Based on the initial value of ¢°, the
predicted shear band thickness for run 1 is §, = 0.42 while the predicted shear band
thickness for run 2 is §, = 0.27. The computed results in Figs 11 and 12 confirm such
predictions.

(2) Itisimportant to observe that weaker strain rate sensitivity permits large increases
in the plastic strain rate to be associated with very small stress reductions. This can be
verified by comparing the results in Figs 11 and 12.

=l g 05 mm Q"=7
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=125 3 ! ’
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Fig. 14. Spatial evolution of the flow stress and plastic strain rate for run 4.
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(3) The test cases labeled run 3 and run 4 are selected so that they have the same
values for 6% and G. The exponents for the power law in run 4 do not correspond to a real
material. They are only selected to emphasize the observation regarding the invariance of
the localization response with respect to 6> and G.

(4) Examination of the computed results for run 3 and run 4 confirms that the spatial
evolution of the plastic strain rate is almost identical for the two cases. On the other hand,
the associated stress drop varies significantly for these two runs. This may be qualified by
recalling the asymptotic solution (44) which indicates that the outer solution for the flow
stress depends primarily on the slope C,. For the power law model, the flow stress behavior
away from the boundaries is expected to be approximated well by

(x, 1) = 14+1C,(x,0). (60)

(5) The computed values, at time ¢ = 0.15, of the outer flow stress based on eqn (60)
are 0.9748, 0.9874, 0.9718, 0.2957 for runs 1-4, respectively. Differences between the
foregoing predictions and computed values are attributed to the usage of the initial value
of the slope C,. However, expression (60) appears to provide satisfactory qualitative
agreement with the computed results.

(6) Equation (56), based on the solution for a Kelvin—-Voigt material, illustrates the
dependence of the band strain rate on the values of G. This dependence is numerically
verified through the almost identical strain rate response in runs 3 and 4.

9. DISCUSSION: THE DEFORMATION NUMBER AND SHEAR BAND THICKNESS

In this section, we attempt to paint a picture of shear band formation based on
conclusions and observations accumulated through the previous sections. Sections 3 and 4
established the connection between the evolution of inhomogeneous, localized plastic flow
and the increased importance of inertia for viscoplastic solids with a net softening response
subject to the cited conditions. Sections 5 and 6 utilized a model problem to gain further
understanding of the aforementioned connection. The interactive roles of material viscosity
and inertia were shown to be displayed through the dimensionless group 6° = S,/p. Solu-
tions associated with small values of 5° were shown to exhibit a boundary layer-like response
in which the thickness of the layers scales with 6 = \/(S,/p). Section 7 provided an exact
solution for the special case of a Kelvin—Voigt material through which we examined the
validity of the different frameworks for material stability (Table 1).

In view of the foregoing analyses, we identify the inverse of §* as an important quantity
through which the interactive roles of material viscosity and inertia are displayed. We refer
to this dimensionless number as the deformation numpber,

1

RD —
52

If

(61)

LGRS

In terms of dimensional values, the above dimensionless group can be expressed as follows:

2
o= ot (©2)
76 (0t/07)
Based on the analyses in previous sections, it appears that the deformation number Ry, may
be used to characterize a deformation as being dynamic or quasi-static rather than relying
only on the applied loading rate. Hence, we suggest that large (small) values of the
deformation number should be used to characterize a particular deformation as being
dynamic (quasi-static). For instance, the deformation corresponding to run 2 is “more
dynamic” than that corresponding to run 1 although the loading rate for the two runs is
identical. In fact, the deformation numbers are 5.6 and 14 for runs 1 and 2, respectively. In
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Fig. 15. Spatial evolution of the deformation number R,,(x, 1) and shear band thickness dy(x, #) for
run 5.

other words, it is the relative strength of inertial to viscous stresses that determines whether
a deformation should be viewed as being dynamic or quasi-static.

Furthermore, we recall the asymptotic results of Section 6 as well as the numerical
observations of Section 8 which suggest that an upper bound for shear band thickness is
given by

‘ 1 S,(x,0)
5y = _ . 63
* T J(Ro(x.0)) \/ p ©3)

Specialization of eqn (63) to the power law model while using dimensional values renders
the following expression for the upper bound of the shear band thickness:

Ow _ mrt,
w0 <64>

Figure 15 illustrates the spatial evolution of the deformation number Rp(x, ¢) for run 5
while the insert in Fig. 15 illustrates the spatial evolution of the shear band width Jg(x,
1) = 1/[/Ro(x, 1)] for the same run. Material parameters for run 5 are chosen to simulate
the response of a typical structural steel (such as the cold-rolled steel 1018). The large
values of the deformation number in the vicinity of the specimen boundary imply the
dominance of inertial stresses over viscous stresses. Furthermore, the shaded length in the
insert corresponds to the upper bound J,, computed from expression (64). It is evident that
shear band estimates based on expression (64) show excellent agreement with the numerical
results for all runs 1-5. It is also interesting to observe that expression (64) can be rewritten

as follows :
%=J@ﬂgﬂ) (65)
H pV3

The term ¢t/¢ In j* is a logarithmic strain rate sensitivity measure. Examination of expression
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(65) implies that localization of the deformation in a narrow region of width d,, « H
requires that

T
V3> - 66
pYo > 511‘1}"’" (66)

i.e. the kinetic energy associated with this deformation should be much larger than the
material viscosity (as expressed by the foregoing logarithmic measure). The reader is
referred to the articles by Cherukuri and Shawki (1995a,b) in which a similar connection
between flow localization and system kinetic energy is established for the case of velocity-
controlled boundaries.

Finally, we note that expression (63) shows no dependence on initial imperfections. It
Is also important to note that expression (63) provides us with the following limiting cases :

o0, =0 as S, =0, (p#0), (67a)
op 2> 0 as p—0, (S, #0). (67b)

The limit (67a) corresponds to dynamic deformations of rate-independent materials
(Rp — ) whereas expression (67b) corresponds to quasi-static deformations of viscoplastic
materials (Rp — 0). The interactive roles of material viscosity and inertia regarding the
introduction of a length scale to this problem are evident.
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